Computer Generation of Characteristic Polynomials of Edge-Weighted Graphs, Heterographs, and Directed Graphs
نویسنده
چکیده
The computer code developed previously (K. Balasubramanian, J . Computational Chern., 5,387 (1984)) for the characteristic polynomials of ordinary (nonweighted) graphs is extended in this investigation to edge-weighted graphs, heterographs (vertex-weighted), graphs with loops, directed graphs, and signed graphs. This extension leads to a number of important applications of this code to several areas such as chemical kinetics, statistical mechanics, quantum chemistry of polymers, and unsaturated systems containing heteroatoms which include bond alternation. The characteristic polynomials of several edgeweighted graphs which may represent conjugated systems with bond alternations, heterographs (molecules with heteroatoms), directed graphs (chemical reaction network), and signed graphs and lattices are obtained for the first time.
منابع مشابه
Some results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
متن کاملThe Laplacian Polynomial and Kirchhoff Index of the k-th Semi Total Point Graphs
The k-th semi total point graph of a graph G, , is a graph obtained from G by adding k vertices corresponding to each edge and connecting them to the endpoints of edge considered. In this paper, a formula for Laplacian polynomial of in terms of characteristic and Laplacian polynomials of G is computed, where is a connected regular graph.The Kirchhoff index of is also computed.
متن کاملChromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...
متن کاملCERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS
In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...
متن کامل